Locating multiple optima using particle swarm optimization
نویسندگان
چکیده
Many scientific and engineering applications require optimization methods to find more than one solution to multimodal optimization problems. This paper presents a new particle swarm optimization (PSO) technique to locate and refine multiple solutions to such problems. The technique, NichePSO, extends the inherent unimodal nature of the standard PSO approach by growing multiple swarms from an initial particle population. Each subswarm represents a different solution or niche; optimized individually. The outcome of the NichePSO algorithm is a set of particle swarms, each representing a unique solution. Experimental results are provided to show that NichePSO can successfully locate all optima on a small set of test functions. These results are compared with another PSO niching algorithm, lbest PSO, and two genetic algorithm niching approaches. The influence of control parameters is investigated, including the relationship between the swarm size and the number of solutions (niches). An initial scalability study is also done. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima
Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based forc...
متن کاملHandling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
This paper presents a new multi-objective optimization algorithm in which multi-swarm cooperative strategy is incorporated into particle swarm optimization algorithm, called multi-swarm cooperative multi-objective particle swarm optimizer (MC-MOPSO). This algorithm consists of multiple slave swarms and one master swarm. Each slave swarm is designed to optimize one objective function of the mult...
متن کاملMulti-Species Particle Swarm Optimizer for Multimodal Function Optimization
This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tri...
متن کاملNiching for Ant Colony Optimisation
Evolutionary Computation niching methods, such as Fitness Sharing and Crowding, are aimed at simultaneously locating and maintaining multiple optima to increase search robustness, typically in multi-modal function optimization. Such methods have been shown to be useful for both single and multiple objective optimisation problems. Niching methods have been adapted in recent years for other optim...
متن کاملNiching for Dynamic Environments Using Particle Swarm Optimization
Adapting a niching algorithm for dynamic environments is described. The Vector-Based Particle Swarm Optimizer locates multiple optima by identifying niches and optimizing them in parallel. To track optima effectively, information from previous results should be utilized in order to find optima after an environment change, with less effort than complete re-optimization would entail. The Vector-B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 189 شماره
صفحات -
تاریخ انتشار 2007